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Abstract—Load-independent output with zero-phase-
angle (ZPA) input is desirable in wireless inductive power
transfer (IPT) converters for effective power delivery, but it
usually greatly relies on the parameters of the loosely cou-
pled transformer, normally fixed or constrained by space.
Thus, customizable outputs cannot be readily achieved un-
less a new transformer is redesigned. In this article, we
elaborate the rather complex relationships among compen-
sation parameters, customizable load-independent-voltage
(LIV) outputs with ZPA input, power efficiency, and over-
all compensation capacitance cost of the series/series-
parallel (S/SP) IPT converter. We present a cost-effective
compensation design to free the customization of LIV out-
puts from a parameter-constrained loosely coupled trans-
former, with optimization between efficiency enhancement
and overall compensation capacitance cost. We conducted
the proposed design supported by experimental results
in S/SP IPT converters with an identical loosely coupled
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transformer and various sets of compensation capacitors.
Compared with a conventional design, the proposed design
provides custom ranges of LIV outputs in both a weak and
a relatively strong coupling condition, with over 5.9% and
5% efficiency improvement, respectively. The overall com-
pensation capacitance can also be reduced by up to 37%
and 21.5%, respectively.

Index Terms—Efficiency optimization, inductive power
transfer (IPT), output customization, series/series-parallel
(S/SP) compensation, zero phase angle (ZPA).

I. INTRODUCTION

D EVELOPMENT in modern power electronics has enabled
wireless inductive power transfer (IPT). Benefiting from

eliminating physical contact, IPT converters can provide user-
friendly and maintenance-free operations of wireless power sup-
ply in many applications, such as consumer electronics, electric
vehicles, bioimplants, underwater vehicles, and so on [1]–[6].
Voltage buses are widely needed in these power electronics
applications and, thus, IPT converters with load-independent
voltage (LIV) output are widely studied [7]–[11].

Effective power transfer is a critical demand in most IPT
application scenarios, where compensation using reactive com-
ponents for a loosely coupled transformer [12] is usually de-
signed to achieve load-independent output and zero-phase-angle
(ZPA) input, thus eliminating the output control [13], [14]
and minimizing the voltage-ampere (VA) rating [15], [16], re-
spectively. Moreover, multiple selectable outputs are desired to
meet specific requirements in some application scenarios, where
the parameters of the loosely coupled transformer are usually
fixed or constrained by space, leading to difficulty in output
design [17]. As an example, bus voltage on vehicle side may
differ in level depending on specifications of the batteries or
supercapacitors, but standard SAE J2954 has suggested a coil
and winding geometry specification for wireless electric vehicle
charging [18], posing challenges to achieving customizable
outputs without redesigning the transformer. Therefore, as a
general technical problem in regardless of application scenarios,
it is worth optimizing the compensation design for customizable
outputs against the constraints of transformer parameters.
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Fig. 1. Conventional design concept of the S/SP IPT converter.

From the perspective of minimizing loss and cost, basic com-
pensation topologies are usually adopted, because they only con-
tain minimum number of external capacitive components, i.e.,
two capacitors, one at each side of the transformer windings, of
which the losses are usually negligible. External inductive com-
ponents, i.e., inductors, with significant copper and core losses
are not needed [19]. Four basic compensation topologies are
normally identified according to the primary/secondary compen-
sation type, namely series/series (SS), series/parallel (SP), par-
allel/series, and parallel/parallel. In [15], design for ZPA input to
minimize VA rating is studied covering four basic compensation
topologies, but output controllability cannot be achieved. In [13]
and [14], characteristics of LIV or load-independent-current
(LIC) output as well as maximum efficiency are comparatively
studied for the SS and the SP IPT converter. Nevertheless, output
to input transfer functions of the SS and the SP IPT converter
greatly rely on transformer parameters, e.g., the LIC transfer
function of the SS IPT converter and the LIV transfer func-
tion of the SP IPT converter are typically io

vi
≈ 1

ωk
√
LPLS

and

vo

vi
≈ 1

k

√
LS

LP
, respectively [13], [14], which are dependent on

the primary self-inductance LP , the secondary self-inductance
LS , and the coupling coefficient k of the transformer. Once
the transformer is designed, the converter transfer functions are
almost fixed unless a new transformer is used. Therefore, basic
compensation may not provide the required current or voltage
output in a particular application scenario.

To overcome the constraints imposed by the transformer
parameters, higher-order compensation topologies with more
reactive components, usually including inductors, can be used
to achieve more design freedom for output transfer functions
without altering the design of the transformer, such as LC/LC
compensation [20] and LCC/LCC compensation [21]. By chang-
ing the compensation parameters, customizable LIV or/and LIC
transfer functions with ZPA input can be achieved for a wide
range of load. Comprehensively, a family of higher-order com-
pensation circuits for IPT converters are proposed in [17]. With
these proposed compensation circuits, LIV and LIC outputs can
be easily customized by adjusting the compensation parameters,
while ZPA input can always be guaranteed to ensure minimum
VA rating. However, the efficiency usually suffers from using in-
ductors with significant copper and core losses, which is a major
concern of these higher-order compensated IPT converters [19].
Moreover, relationship between compensation parameter design
and efficiency performance has rarely been studied.

As a tradeoff between basic compensation and higher-order
compensation, SS/SP (S/SP) compensation without lossy in-
ductors is readily derived for the loosely coupled transformer
to easily implement LIV output and ZPA input [7]–[9], with

Fig. 2. (a) Schematics and (b) equivalent circuit model of the S/SP IPT
converter.

an intuitive design concept illustrated in Fig. 1. The primary
leakage inductance Ll,P , secondary leakage inductance Ll,S ,
and mutual inductance LM of the T-circuit model of the loosely
coupled transformer are fully compensated by the external ca-
pacitors CP , CS , and CS,P , respectively, such that the S/SP
IPT converter can behave as an ideal transformer with a turn
ratio of 1

n to achieve LIV output, as well as ZPA input due to
pure resistive input impedance. This intuitive design concept
fixes the LIV transfer function at a k-independent point fea-
turing misalignment-tolerance, but it does not meet the desired
requirement of output customization. Moreover, efficiency per-
formance and overall compensation capacitance cost related to
compensation parameters are even more worth being further
studied to facilitate the design of the S/SP IPT converter.

In this article, a cost-effective compensation design is elab-
orated to achieve customizable LIV outputs with ZPA input
and optimized power efficiency for the S/SP IPT converter.
This article is organized as follows. In Section II, compensa-
tion parameters are indicated by a single design factor μ and
analyzed to generalize conditions allowing any designs for S/SP
IPT converters with an identical loosely coupled transformer
to achieve customizable LIV transfer functions with ZPA input.
Section III gives criteria for theoretical optimum efficiency, with
which the relationship of efficiency improvement and design
of μ is revealed, and a critical minimum design value of μ
is derived to ensure load matching for optimized efficiency.
Section IV optimizes the custom range of LIV outputs between
the efficiency performance and the overall compensation ca-
pacitance cost, and puts forward a cost-effective design. The
proposed design is experimentally verified in Section V. Finally,
Section VI concludes this article.

II. ANALYSIS OF LIV OUTPUT WITH ZPA INPUT

Fig. 2(a) shows the schematics of an S/SP IPT converter con-
sisting of an input voltage source VI , a full bridge inverter, a res-
onant tank with S/SP compensation, and a rectifier with LC filter.
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Fig. 3. LIV transfer function ELIV versus compensation design
indicator μ.

To generalize the analysis of the input and output of the S/SP
IPT converter, Fig. 2(b) shows a commonly used coupled-circuit
model based on fundamental approximation [13], [14], where
the loosely coupled transformer has primary self-inductanceLP ,
secondary self-inductance LS , and mutual inductance M . The
coupling coefficient is given by k = M√

LPLS
. CP and CS are

the series compensation capacitors in each side, while CS,P is
the parallel compensation capacitor in the secondary side. Coil
losses in the primary and the secondary sides are represented by
resistors RP and RS . vi, vo, and RL are the equivalent input
voltage, output voltage, and load resistor, respectively. Similar
to that of the SS IPT converter, CP and CS resonate with LP

and LS at angular frequencies

ωP =
1√

LPCP

, and (1)

ωS =
1√

LSCS

(2)

respectively. Their ratio is defined as an indicator of compensa-
tion parameter design and given by

μ =
ωP

ωS
. (3)

In this article, the single factor μ will be investigated to indicate
a cost-effective design of compensation parameters, including
CP , CS , and CS,P of the S/SP IPT converter, for customizing
LIV outputs with ZPA input, and optimizing between power
efficiency and overall compensation capacitance cost.

A. Customizable LIV Outputs

The coupled circuit equations for the S/SP IPT converter in
Fig. 2(b) are

(RP + jXP )iP − jXM iS = vi

− (RS + jXS + Zeq)iS + jXM iP = 0 (4)

where XP = ωLP − 1
ωCP

, XS = ωLS − 1
ωCS

, XM = ωM ,
and Zeq = 1

jωCS,P+ 1
RL

are the impedance of corresponding

components for calculation.
The ratio of the output voltage vo to the input voltage vi is

defined as voltage transfer function E, of which the calculation

TABLE I
SIMULATION PARAMETERS OF THE S/SP IPT CONVERTER

is highlighted as

E =
vo
vi

=
jXM

jXP +
X2

M−XPXS

Zeq

. (5)

Although RP and RS are nonzero for a practical IPT converter,
it is valid to simplify subsequent analyses of voltage transfer
function and input phase angle by assumingRP = 0 andRS = 0
[13], [14], [17]. From (5), the condition to achieve LIV transfer
function is obviously given by

ω2M2 −XPXS = 0. (6)

By solving (6), the LIV transfer function ELIV and the corre-
sponding operating frequency ωH are given by

ELIV =

√
LS

LP

k(μ2 + 1 +Δ)

(2 k2 − 1)μ2 + 1 +Δ
, and (7)

ωH = ωS

√
μ2 + 1 +Δ

2(1− k2)

≈ μ√
1− k2

ωS , for (μ2 − 1)2 � 4 k2μ2 (8)

respectively, where Δ =
√

(μ2 − 1)2 + 4 k2μ2. It should be
pointed out that the S/SP IPT converter can also achieve another

LIV transfer functionELIV|ωL
=

√
LS

LP

k(μ2+1−Δ)
(2 k2−1)μ2+1+Δ at oper-

ating frequency ωL = ωS

√
μ2+1−Δ
2(1−k2) . Similar to the case of S/S

IPT converter, operating at ωH is usually preferred because of
better efficiency performance and, thus, chosen for subsequent
analyses in this article [7], [8]. From (7), ELIV is customizable
with different designs of μ by altering CP , CS , and CS,P . Fig. 3
shows the customizable ELIV versus μ under different values of
k with the simulation parameters given in Table I, which will be
used for the rest of this article unless specified. It can also be
observed that, ELIV is k-dependent for most designs of μ except
the unity design, i.e., μ = 1.

B. ZPA Input

ZPA input is important for the IPT converters to minimize
VA rating and improve power transfer capability. The input
impedance of the S/SP IPT converter shown in Fig. 2(b) is given
by

Zin = jXP +
ω2 M2

jXS + Zeq
. (9)

To achieve ZPA input, Zin should be purely resistive, i.e.,

�(Zin) = Zin (10)
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for arbitrary load conditions. Substituting (8) into (9) and solving
(10), design of CS,P for ZPA input can be derived as

CS,P =
CS

ω2
H

ω2
S
− 1

(11)

which is determined by the design of μ.

C. Revisiting of Conventional Design for
Misalignment-tolerance

Specifically, for the S/SP IPT converters based on conven-
tional design concept [7]–[9], μ is actually set at unity by
properly choosing CP and CS to satisfy ωP = ωS . Such that,
the LIV transfer function has no relationship with k as given by

ELIV|μ=1 =

√
LS

LP
, at (12)

ωH |μ=1 =
ωS√
1− k

, when μ =
ωP

ωS
= 1. (13)

Since the LIV transfer function ELIV|μ=1 in (12) is k-
independent, it is commonly believed that the S/SP IPT con-
verter with such design is misalignment-tolerant and suitable
for dynamic IPT applications with k-variation [7]–[9]. However,
since the operating frequency ωH |μ=1 in (13) is k-dependent,
phase-lock loop control is usually needed for frequency track-
ing against the variation of k [10], [11]. Moreover, CS,P is
k-dependent from (11), and additional adaptive control for
CS,P is inevitably required to maintain ZPA input against k-
variation [22], [23]. Therefore, in practice, it takes a lot of control
effort for the S/SP IPT converter to maintain LIV output and ZPA
input in dynamic applications [10], [11], [22], [23]. This concern
facilitates our implementation of the S/SP IPT converter toward
stationary IPT applications with invariable k.

III. EFFICIENCY OPTIMIZATION

A. Criteria for Maximizing Power Efficiency

Fig. 4(a) gives an equivalent circuit of Fig. 2(b) for analysis
of the power efficiency. Zr is the reflected impedance from the
secondary to the primary given by Zr = ω2 M2

jXS+Zeq
. As usual, by

separately considering the efficiency ηP in the primary and the
efficiency ηS in the secondary sides, overall power efficiency η
of the S/SP IPT converter can be calculated as

η = ηP ηS =
�(Zr)

RP + �(Zr)

�(Zeq)

RS + �(Zeq)
(14)

where � represents calculation of real component.
To analyze the power efficiency in a more intuitive way, the

equivalent impedance Zeq is transformed into a form of series
connection as shown in Fig. 4(b) and rewritten as

Zeq = jXS,P + jΔXL,eq +RL,eq (15)

where

RL,eq =
RL

Q2 + 1
(16)

Fig. 4. (a) Equivalent circuit model of Fig. 2(b) with reflected
impedance Zr , and (b) transformation of load impedance in Fig. 4(a)
into a form of series connection.

ΔXL,eq =
RL,eq

Q
, and (17)

Q = ωCS,PRL (18)

are defined as equivalent load resistance, equivalent load re-
actance, and load quality factor, respectively. Since the S/SP
IPT converter desirably achieves LIV output at ωH , it can be
observed that

XS +XS,P = 0, at ωH . (19)

With (14), (15), and (19), the power efficiency at ωH can be
calculated and further simplified as

η =
1

ΔX2
L,eq

RL,eq
+

(RL,eq+RS)2

RL,eq

ω2
H M2 RP + RS

RL,eq
+ 1

≈ 1
ΔX2

L,eq
RL,eq

+RL,eq

ω2
H M2 RP + RS

RL,eq
+ 1 (20)

with the assumptions ω2
H M2

RPRS
� 0 and RL,eq � RS . The opti-

mum values of RL,eq and ΔXL,eq will be found to maximize η.
From (20), the efficiency can be maximized as

ηopt ≈ 1
2

k
√
QPQS

+ 1
, if (21)

RL,eq,opt = ωHM

√
RS

RP
, and (22)

ΔX2
L,eq

RL,eq
=

RL,eq

Q2
→ 0 (23)

where QP = ωHLP

RP
and QS = ωHLS

RS
are the quality factors of

the primary and secondary winding coils, respectively. Similar
to the case of the S/S IPT converter [24], (22) and (23) are the
criteria of critical load impedance matching point for the S/SP
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IPT converter to achieve maximum efficiency when operating
with LIV output and ZPA input.

B. Achieving Optimum Equivalent Load Resistance

From (16) and (18), there may exist a local maximum of
RL,eq, which can be calculated by solving dRL,eq

dRL
= 0 and given

by

RL,eq,max =
1

2ωHCS,P
, at (24)

RL =
1

ωHCS,P
. (25)

Obviously, optimum equivalent load resistance RL,eq,opt in (22)
is achievable only if

RL,eq,max > RL,eq,opt. (26)

Therefore, with (22), (24), and (26), the design of μ should,
therefore, satisfy

μ > μeff =

√
1− k2

1− 2 k
(27)

for efficiency optimization, whereμeff is defined as the minimum
value of μ for efficiency optimization.

Fig. 5(a) shows the equivalent load resistance RL,eq versus
the load resistance RL under different designs of μ. μeff can be
calculated as 1.36. It can be observed that when μ is less than
μeff , RL,eq cannot reach RL,eq,opt for efficiency optimization.

C. Minimizing Equivalent Load Reactance

Supposing the optimum equivalent resistanceRL,eq,opt in (22)
is achievable with proper design of μ satisfying (27), a large Q

should be further achieved to minimize
ΔX2

L,eq

RL,eq
as (23). With

(16), (18), and (23), the quality factor Q can be derived as

Q =
μ2 − 1 + k2

2kμ2
+

√(
μ2 − 1 + k2

2kμ2

)2

− 1 (28)

and plotted in Fig. 5(b). It can be observed that Q
becomes larger with the increase of μ, which means the

reactance component
ΔX2

L,eq

RL,eq
in (23) can be further min-

imized for higher efficiency by designing a larger value
of μ.

It can be concluded that the S/SP IPT converter can achieve
higher power efficiency by designing a larger value of μ. As an
illustration, the operating frequency ωH is fixed to an identical
value for fair comparison, and the curves of power efficiency η
versus load resistance RL are plotted in Fig. 5(c). Compared
with conventional design of unity μ, the peak efficiency is
progressively improved with the increase of μ.

IV. DESIGN CONSIDERATIONS

A. Current Stresses on the Windings

To achieve optimum efficiency, design of μ should allow
equivalent load resistance RL,eq to satisfy (22) and minimize
ΔXL,eq toward zero as (23).ΔXL,eq can be ignored due to high

Fig. 5. Calculated results in coupling condition of k = 0.25: (a) equiva-
lent resistance RL,eq versus load resistance RL under different designs
of μ, (b) quality factor Q versus μ, and (c) power efficiency η versus load
resistance RL under different designs of μ.

quality factor Q of the resonant circuit. Therefore, for different
designs satisfying (27), i.e., μ > μeff , the equivalent circuit
models at maximum efficiency points are nearly identical, with
optimum equivalent load resistance RL,eq,opt and negligible
equivalent load reactance ΔXS,P as shown in Fig. 4(b). It can
be estimated that design of μ for efficiency optimization will not
affect the current stresses on the primary and secondary windings
too much. Such that, LIV transfer functions can be customized
by designing the compensation parameters without a necessity to
redesign the loosely coupled transformer. Moreover, the output
power levels are almost identical under different designs of μ.

B. Compensation Capacitance Cost

It is well known that the cost of an IPT converter can be
reduced by minimizing its VA rating and improving its power
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efficiency [15], [16]. The S/SP IPT converter can realize ZPA
input and achieve efficiency optimization by designing the com-
pensation parameters indicated by the single factor μ discussed
above. However, different designs of μ may lead to variations of
overall compensation capacitance cost, which is, thus, of interest
to be optimized. In general, the cost of compensation capacitor is
affected by the specifications, including capacitance and voltage
tolerance, but also affected by the manufacturing factors (e.g.,
volume) and commercial factors (e.g., order quantity, custom, or
unique specifications) [25]–[27], making it infeasible to choose
unique specifications for each capacitor in practice. Given iden-
tical capability of energy storage, metalized polypropylene thin
film capacitors with high nominal voltage and small capacitance
have better cost performance compared with those with low
nominal voltage and large capacitance [25]–[27]. In addition,
commercially available capacitors for high-frequency resonant
converters (including IPT converters) usually have sufficiently
high voltage tolerance for the compensation capacitors of the
IPT converter in this work [28]. Such that, the cost of the
compensation capacitance can be approximately reflected by
the overall compensation capacitance.

Similar to the comparison of power efficiency, the operating
frequency ωH is fixed to an identical value under different
designs of μ by choosing the compensation capacitors CP , CS ,
and CS,P . With (1), (2), (3), (8), and (11), the compensation
parameters are approximated as

CP ≈ 1

1− k2
1

ω2
HLP

(29)

CS ≈ μ2

1− k2
1

ω2
HLS

, and (30)

CS,P ≈ μ2

μ2 + k2 − 1

1

ω2
HLS

(31)

with the assumption (μ2 − 1)2 � 4 k2μ2. Overall compensa-
tion capacitance can be calculated by

Ctotal = CP + CS + CS,P . (32)

Substituting (29) to (31) into (32) and solving dCtotal

dμ = 0,
design of μ for minimum capacitance is given by

μcost =
√

2(1− k2). (33)

As an illustration, Fig. 6 shows the compensation capacitance
calculated with parameters given in Table I versus μ. A design
for minimum Ctotal exists at μcost.

C. Cost-Effective Compensation Design

It has been studied in Section II that a wide range of cus-
tomizable LIV outputs with ZPA input can be achieved by
simply altering the compensation design indicator μ of the
S/SP IPT converter. It is also revealed in Section III that the
maximum efficiency ηmax can be progressively enhanced with
the increase of μ, and specifically μ > μeff is required for a high
efficiency. Moreover, a minimum value of overall compensation
capacitance Ctotal exists at μcost, and Ctotal will increase as μ
becomes larger when μ > μcost as discussed in Section IV-C.

Fig. 6. Capacitance versus μ.

Fig. 7. Maximum efficiency ηmax and normalized overall compensa-
tion capacitance ζ versus compensation design indicator μ.

Therefore, the tradeoff between improving power efficiency and
minimizing overall compensation capacitance cost imposes con-
straints to the design range of μ for customizable LIV outputs.

The overall compensation capacitance Ctotal can be normal-
ized as

ζ =
Ctotal

Ctotal|μcost

(34)

with the minimum value Ctotal|μcost
being the per-unit value.

Simulation curves in Fig. 7 show how maximum efficiency ηmax

and normalized overall compensation capacitance ζ vary withμ.
ηmax increases with μ at a reducing rate (saturates as μ becomes
large), and ζ increases with μ at an increasing rate when μ >
μcost. Hence, increasing μ will offer diminishing return of ηmax

and lead to sharp increase of ζ. To achieve customizable LIV
output with efficiency optimization, we may restrict ζ to be no
greater than that of conventional design, i.e., ζ <= ζ|μ=1 as a
cost-effective design. A limiting value of μ for ζ-restriction can
be given by

μlimit =

√
λ +

√
λ2 + k2 + 1 (35)

where λ = 1
2 (

1
k + 1 + k LS

LP
). With (27) and (33), for typical

conditions of coupling coefficient of wireless IPT applications,
i.e., k < 0.25, μcost is guaranteed to be larger than μeff . There-
fore, a design range of μ is proposed, given by

μcost < μ < μlimit (36)
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Fig. 8. Experiment setup.

TABLE II
CONVERTER PARAMETERS

to achieve cost-effective compensation design of the S/SP IPT
converter for customizable LIV outputs with ZPA input and
optimized efficiency, as shown in Fig. 7. The range of LIV output
and the percentage efficiency improvement obtained with the
design of μ given in (36) should be verified as being satisfactory.
Otherwise, a choice of larger μ for wider range of LIV output
and better efficiency performance is required, with higher overall
compensation cost ζ as compromise.

V. EXPERIMENTAL VERIFICATION

To verify the proposed cost-effective compensation design of
the S/SP IPT converter, prototypes are built as shown in Fig. 8,
with detailed parameters given in Table II. The S/SP converters
share an identical loosely coupled transformer, where conditions
of week coupling coefficient kmin and relatively strong coupling
coefficient kmax will be considered to evaluate the proposed
design. Various sets of CP , CS , and CS,P are used for com-
pensation, under different compensation design indicators, i.e.,
μ = 1, μ = 1.35, μ = 2, and μ = 2.5. They can be calculated
with (1)–(3), (8), and (11), while the practical parameters are
given in Table II.

A. Measured Waveforms and LIV Outputs

Figs. 9 and 10 show the measured waveforms of the S/SP
IPT converters with different compensation designs (indicated
by different values of μ), at kmin = 0.17 and kmax = 0.254,
respectively. The waveforms include the input voltage vi, input

Fig. 9. Steady-state waveforms of the S/SP IPT converters at kmin =
0.17, with different compensation deigns. CH1: vi, 25 V/div, CH2: iP ,
5 A/div, CH3: iS , 5 A/div, and CH4: VO , 50 V/div. VO can be customized
from 26 to 143.3 V when the design value of μ varies from 1 to 2.5.
(a) μ = 1. (b) μ = 1.35. (c) μ = 2. (d) μ = 2.5.

Fig. 10. Steady-state waveforms of the S/SP IPT converters at kmax =
0.254, with different compensation deigns. CH1: vi, 25 V/div, CH2: iP ,
5 A/div, CH3: iS , 5 A/div, and CH4: VO , 50 V/div. VO can be customized
from 29 to 102.7 V when the design value of μ varies from 1 to 2.5.
(a) μ = 1. (b) μ = 1.35. (c) μ = 2. (d) μ = 2.5.

current (primary winding current) iP , secondary winding current
iS , and dc output voltage VO. vi and iP are kept in phase,
thus ZPA input can be achieved with different compensation
designs of μ to minimize VA rating for the inverter. Both iP and
iS are kept nearly identical for μ = 1.35, μ = 2, and μ = 2.5,
which coincides with the analysis in Section IV-A that current
stresses on the primary winding and the secondary winding are
not affected by the design of μ. It also verifies that although the
output voltage and the optimum load resistance vary a lot under
different designs of μ, the output power levels at maximum effi-
ciency points are nearly identical. Thus, it is fair to compare the
maximum efficiency points in Section V-B. The output voltage
VO is customizable with direct readout of the magnitude shown
in Figs. 9 and 10, and the measured dc LIV transfer function
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Fig. 11. Measured dc LIV transfer function ELIV,DC = VO
VI

versus
compensation design indicator μ in different conditions of coupling.

ELIV,DC = VO

VI
(marked with “©” for kmin and “�” for kmax)

versus μ are shown in Fig. 11. It should be noted that there exists
a scale factor between the dc voltage gain and ac voltage gain,
i.e., ELIV,DC = 8

π2ELIV. Since there exist practical converter
losses, the measured dc voltage gain is slightly lower than the
calculated results. However, the trend of ELIV,DC with respect
to the variation of μ coincides with the simulated results shown
in Fig. 3.

B. Measured Efficiency and Overall
Compensation Capacitance Cost

The input dc power and output dc power are measured by
a Yokogawa PX8000 Precision Power Scope. In Fig. 12, the
curves plot measured efficiency η versus load resistance R in
different conditions of coupling coefficient k and with different
design values ofμ. The curves in dark blue indicate the efficiency
performance for conventional compensation design, i.e., μ = 1.
Obviously, the efficiency can be enhanced with our proposed
compensation design, as indicated by the direct readout of
maximum efficiency points of green, red, and light blue curves,
where the maximum efficiency is progressively improved with
the increase of μ.

In Fig. 13, measured maximum efficiency points (marked
with blue “©” for kmin and blue “�” for kmax) are plotted,
which increase monotonically and saturate as μ becomes large.
Although the measured maximum efficiencies are slightly lower
than the simulated results shown in Fig. 7 due to the converter
losses, the trend of the measured maximum efficiencies with
respect to μ coincides with the simulation. The overall compen-
sation capacitance for different designs of μ can be calculated
with parameters given in Table II and the measured normalized
value ζ are plotted as green curves in Fig. 13, where green
“©” and green “�” represent ζ for kmin and kmax, respectively.
There exist local minimums at μmin ≈ 1.35 for both coupling
conditions, thus the overall compensation capacitance is not in a
monotonic relationship with the design of μ. At μmin ≈ 1.35, it
is great to find that there are 37% and 21.5% reduction of the over
compensation capacitance as well as 5.9% and 5% improvement
of the efficiency at kmin and kmax, respectively, compared with

Fig. 12. Measured efficiency η versus load resistance R under differ-
ent conditions of coupling coefficient. (a) kmin = 0.17. (b) kmax = 0.254.

Fig. 13. Measured maximum efficiency ηmax and normalized overall
capacitance ζ versus compensation design indicator μ.

those with conventional design, i.e., μ = 1. To achieve cost-
effective compensation design for customizable LIV outputs
and optimized efficiency, we restrict ζ to be no greater than
ζ|μ=1. Design ranges of 1.35 < μ < 2.4 and 1.35 < μ < 2 are,
therefore, given for kmin and kmax as shown in Fig. 13, where
ηmax will be further improved and ζ will increase from its
minimum but still locating in a satisfactory range. The custom
ranges of LIV transfer function are shown in Fig. 11. It can also
be observed in Fig. 13, beyond the proposed design ranges of
μ, ηmax becomes saturated while ζ increases rapidly, thus the
design will not be cost-effective anymore.
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TABLE III
COMPARISON OF DESIRABLE FEATURES BETWEEN OUR ARTICLE AND THE LITERATURE

C. Comparison With the Literature

Table III summarizes the comparison of the desirable features
between our proposed design and those in the literature. All the
desirable features can be achieved in our proposed design.

VI. CONCLUSION

In this article, parameters of three compensation capacitors
of a S/SP IPT converter were indicated by a single factor
μ, which simplifies the analysis of the relationships among
compensation parameters, customizable LIV outputs with ZPA
input, power efficiency, and overall compensation capacitance
cost. Critical values of μ ensuring load impedance matching for
optimized efficiency, achieving minimum overall compensation
capacitance and limiting overall compensation capacitance for
effective cost were respectively derived for guiding the design.
A cost-effective compensation design achieving customizable
LIV outputs with enhanced power efficiency and reduced overall
compensation capacitance was elaborated. Experiment results
validate the analysis and the proposed cost-effective compen-
sation design in customizing the output and optimizing the
efficiency.
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