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An Inductive-Power-Transfer Converter With High
Efficiency Throughout Battery-Charging Process
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Abstract—An inductive power transfer (IPT) converter usually
has an optimum efficiency only at a matched load. Because of wide
load range variation during battery charging, it is challenging for
an IPT converter to achieve the required output and maintain
high efficiency throughout the charging process. In this paper, a
series–series compensated IPT converter with an active rectifier is
analyzed and implemented for battery charging. Appropriate oper-
ations are employed for constant-current charging and constant-
voltage (CV) charging. A novel operation approach is proposed
to achieve constant output voltage and to ensure load impedance
matching during CV charging without the help of an extra dc–dc
converter, which incurs loss. Both a frequency modulated primary
inverter and a phase-angle modulated secondary active rectifier
can achieve soft switching. High efficiency can be maintained dur-
ing the whole battery-charging profile.

Index Terms—Battery charging, efficiency optimization,
inductive power transfer (IPT), soft switching.

I. INTRODUCTION

AN INDUCTIVE power transfer (IPT) system can transfer
power wirelessly from a transmitter coil to a receiver coil

over a short-range air gap, which eliminates physical electrical
contact between subsystems of the transmitter and the receiver
with minimal electromagnetic radiation [1]. With such a wire-
less convenience, IPT has been used for battery charging in
many applications, such as consumer electronics, biomedical
implants, and electric vehicles [2]. Fig. 1 shows a typical charg-
ing profile of a battery, where the battery is charged initially by
a constant current (CC) and subsequently by a constant voltage
(CV) [3]. The charging process is started with CC charging at the
rated value, where the battery voltage increases from the value
of discharge cutoff to the value of charge threshold. The charg-
ing process is followed by CV charging at the charge threshold
voltage to fully charge the battery, where the charging current
decreases from the rated value to the minimum value at only a
few percent of the rated value. The equivalent dc resistance of
the battery increases significantly during the charging process.
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Fig. 1. Typical charging profile of a battery and operation modes of a battery
charger.

Because of such a wide load range, efficiency optimization is a
challenging design problem for most converters.

In an IPT system, the transmitter coil and the receiver coil
form a loosely coupled transformer that has significant leakage
inductances and a relatively small mutual inductance. Compen-
sation of reactive power from the transformer using external
reactive elements is often required to improve system perfor-
mances, which may include power transfer capability, power
efficiency, power regulation, and tolerance to misalignment be-
tween the coils [4]–[7]. The compensated transformer is often
driven by an ac source generated from an inverter circuit for
simplicity and good efficiency. An inverter circuit using half-
bridge or full-bridge permits soft switching, which significantly
improves efficiency. Soft switching can be designed to achieve
zero-voltage switch-ON (ZVS) of metal-oxide-semiconductor
field-effect transistor (MOSFET) switches or zero current switch-
OFF of insulated-gate bipolar transistor (IGBT) switches. Phase-
shift pulsewidth modulation (PWM) control can be used to
modulate the input for the required output in battery charg-
ing. However, soft switching is hard to achieve even for a small
modulation depth. In order for the inverter circuit to achieve soft
switching at a fixed duty cycle, dc–dc converters at the front-side
and/or the load-side are/is often incorporated in an IPT system
to perform the required modulation of power. As a tradeoff, the
maximum system efficiency suffers because of the use of more
stages of power conversion. Alternatively, IPT converters can
be designed at their native load-independent current (LIC) or
load-independent voltage (LIV) output operating frequency [6],
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[8]–[11]. With the property of LIC or LIV, a very shallow
duty-cycle modulation can provide precise charging at CC or
CV operation. Therefore, a converter stage can be saved.

The battery-charging profile requires both CC and CV charg-
ing. Thus, a single IPT converter is designed with hybrid or
switchable compensation topology to achieve both LIC and
LIV outputs [12]–[14]. However, hybrid topologies need power
switches in series with the power path; this incurs higher con-
duction loss and component cost. To reduce loss and cost, a
single compensation topology can also be designed to operate
at two operating frequencies both for the LIC and LIV outputs
[15], [16].

The IPT converters mentioned above have the benefits of soft
switching. They can be optimized both for CC and CV out-
puts with minimal control complexity. However, keeping the
property of soft switching in mind, they cannot be optimized
for the best efficiency using impedance matching without us-
ing a multistage design, which includes front-side and load-side
dc–dc converters [18]–[23]. Because of the wide range of bat-
tery dc resistance during CV charging, we can say that without
impedance matching, the efficiency of the IPT converter de-
grades significantly, as demonstrated in [12]–[16].

In multistage designs, the load-side dc–dc converter trans-
forms the load impedance into matching load impedance to
maintain the maximum efficiency, while the front-end dc–dc
converter modulates the input voltage amplitude of the IPT con-
verter to control the input power. The IPT converter is always
kept at the optimal load and with soft switching. A wireless
data feedback channel is normally required for the regulation of
the output power. Different control schemes are studied, which
include the minimum input current tracking [18], the maximum
efficiency tracking [19]–[22], and the voltage ratio control [23].
The designs in [18] and [23] use a receiver-side dc–dc converter
for the direct control of output power such that fast wireless com-
munication between the transmitter and the receiver is not nec-
essary. These multistage IPT systems with impedance matching
for the maximum system efficiency have obvious drawbacks.
Losses and costs of additional dc–dc converters are inevitable.
More complicated controllers are needed for the whole system
and the additional dc–dc converters.

The additional dc–dc converters in multistage IPT systems
apply modulation to achieve impedance matching to maintain
the system at the optimal efficiency point without losing the soft-
switching property of the inverter. Alternatively, the modulation
given by the additional dc–dc converter can be implemented by
the inverter and the active rectifier circuit as shown in Fig. 2.
Thus, the extra dc–dc converters can be omitted. However, it
has been shown directly in [15] and indirectly in [12]–[16] that
deep PWM of the inverter suffers high loss because of hard
switching. Nevertheless, disregarding switching losses from the
inverter bridge and the active rectifier, impedance matching has
been implemented in [24] and [25]. In [24], [25], the modulation
in the active rectifier ensures that the fundamental component of
vs and is are in phase, thus permitting direct application of the
usual model for performing fundamental frequency analysis.

Without the implementation of impedance matching for ef-
ficiency optimization for wide load range, soft switching of
the active rectifier bridge is demonstrated in [26] and [27]. A

Fig. 2. Series–series IPT (SSIPT) system.

summary of desirable features for an IPT battery charger de-
veloped so far is presented in Table I. It will be desirable to
develop an IPT battery charger that has an optimized efficiency
for wide load range applications in CV charging, soft switching
of the inverter and the active rectifier circuits, no extra dc–dc
converter, no extra power switch, design for the battery charg-
ing profile, and receiver-side master control without the use of
a fast wireless communication channel between the transmitter
and the receiver.

In this paper, we will develop an IPT battery charger as shown
in Fig. 2 with all the desirable features in Table I. This paper
is organized as follows. Section II highlights the system struc-
ture for battery charging and analyzes load impedance, voltage
transfer ratio, efficiency, and input impedance of the SSIPT con-
verter with the active rectifier. Section III defines critical criteria
to achieve the maximum efficiency for an arbitrary operating
frequency, and also defines a generally applicable load match-
ing range for maintaining high system efficiency. Section IV
proposes a novel approach to CV charging by controlling the
operating frequency of the inverter and the conduction angle of
the active rectifier. Section V experimentally verifies the output
performance and efficiency performance. Finally, Section VI
concludes this paper.

II. SYSTEM STRUCTURE AND THEORETICAL ANALYSIS

A. System Structure

In the schematic of an SSIPT converter shown in Fig. 2, the
magnetic coupler has self-inductances LP and LS , and mutual
inductance M . Subscripts P and S indicate parameters in the
primary and the secondary sides, respectively. The coupling
coefficient is given by k = M√

LP LS
. Both coils of the magnetic

coupler are compensated by external capacitors CP and CS

connected in series, with the resonant angular frequencies:

ωP =
1√

LP CP

, and (1)

ωS =
1√

LS CS

. (2)

Coil losses are represented by resistances RP,w and RS,w . DC
voltage source, VI , is modulated to a high-frequency ac voltage,
vP , which drives the primary coil through a full-bridge inverter
having four MOSFETs, Q1–Q4 . The ac output is rectified to a dc
output to charge the battery by an active rectifier with output
filter capacitor, Cf . Secondary ac voltage, vS , and secondary
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TABLE I
DESIRABLE FEATURES OF AN IPT BATTERY CHARGER

Fig. 3. Operation waveforms of the active rectifier.

ac current, iS , are the inputs of the active rectifier circuit. DC
voltage VO and dc current IO are charging the battery. The active
rectifier consists of two MOSFETs, Q7 and Q8 , and two diodes,
D5 and D6 . Also, D7 and D8 are the anti-parallel diodes of Q7
and Q8 .

B. Operating Waveforms and Equivalent Model

The operating waveforms of the active rectifier are shown in
Fig. 3. Transistors Q7 and Q8 are turned ON during the turn-on
time of their anti-parallel diodes in order to achieve ZVS. Both
Q7 and Q8 are turned ON for half a cycle. Therefore, Q7 and
Q8 are turned OFF with a time delay of π − θ ∈ [0, π], until
reaching the zero-cross points of iS . Thus, conduction angle θ
of the active rectifier varies between 0 and π. It should be noted
that change in θ will affect the phase angle between vS and iS .
As shown in Fig. 3, vS,1 is the fundamental component of vS ,
and it lags behind iS with a phase angle given by γ = π−θ

2 .
Therefore, the equivalent load is an impedance instead of the
usual pure resistance.

Because the battery-charging process is slow compared to
the operating period of the SSIPT converter, the battery can be
modeled as a resistor determined by the charging voltage and
the charging current, i.e., RL = VO

IO
. It has been studied that the

active rectifier, together with resistive load, can be represented
by an equivalent fundamental impedance [26], [27], given by

Zeq = Req + jXeq (3)

Fig. 4. AC equivalent circuit model of the SSIPT converter.

where

Req =
8
π2 RL sin4

(
θ

2

)
, and (4)

Xeq = − 8
π2 RL sin3

(
θ

2

)
cos

(
θ

2

)
(5)

are equivalent resistance and reactance, respectively.
Fig. 4 shows an equivalent model of the SSIPT converter

using fundamental approximation. This model is sufficiently
accurate for high-quality resonant circuits operating near the
resonant frequency. Here, VP , IP , VS , and IS are phasors of
the fundamental components of vP , iP , vS , and iS , respectively.
Resistor RP includes losses from the primary coil and the in-
verter, while resistor RS includes losses from the secondary coil
and the active rectifier. The load is represented by an equivalent
impedance, Zeq , with resistance Req and reactance Xeq .

The basic equations for the circuit model in Fig. 4 are

(RP + jXP )IP − jXM IS = VP (6)

− (RS + Req + jXS )IS + jXM IP = 0 (7)

where

XM = ωM (8)

XP = ωLP − 1
ωCP

, and (9)

XS = ωLS − 1
ωCS

+ Xeq (10)

are mutual reactance, transmitter-side reactance, and receiver-
side reactance, respectively. The operating angular frequency
is represented by ω. The input voltage of the active rectifier is
given by VS = (Req + jXeq)IS .
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C. Voltage Transfer Ratio, Power Efficiency, and
Input Impedance

Using Fourier analysis, the magnitudes of VP and VS are
given by

|VP | =
4
π

VI , and (11)

|VS | =
4
π

sin
(

θ

2

)
VO . (12)

From (6)–(12), the dc voltage transfer ratio of the SSIPT
converter shown in Fig. 2 can be calculated as

GV =
VO

VI
(13)

=

∣∣∣∣∣∣
XM

Z e q

sin( θ
2 )

(RP + jXP )(RS + Req + jXS ) + X2
M

∣∣∣∣∣∣ . (14)

Using the equivalent model shown in Fig. 4, the efficiency

η =
|I|2S Req

|I|2S Req + |I|2S RS + |I|2P RP

(15)

=
X2

M Req

[(Req + RS )2 + X2
S ]RP + X2

M (Req + RS )
. (16)

The input impedance and input phase angle are, respectively,

Zin = RP + jXP +
X2

M

Req + RS + jXS
, and (17)

ϕ =
180
π

arctan
�(Zin )
�(Zin )

(18)

where �(Zin ) and �(Zin ) are the real and imaginary compo-
nents of the input impedance, Zin , respectively.

III. EFFICIENCY OPTIMIZATION

A. Theoretical Maximum Efficiency

The power efficiency given in (16) can be simplified as

η ≈ 1

R e q +
X 2

S
R e q

X 2
M

RP + RS

R e q
+ 1

(19)

with assumptions X 2
M

RP RS
� 1 and R e q

RS
> 1.

We will find the optimum values of Req and Xeq leading to
maximum efficiency. For an arbitrary operating frequency, ω,
from (19), it is obvious that the efficiency can be maximized as

ηopt ≈ 1
1

k
√

QP QS
+ 1

, if (20)

XS,opt = ωLS − 1
ωCS

+ Xeq = 0, and (21)

Req,opt = ωM

√
RS

RP
(22)

where QP = ωLP

RP
and QS = ωLS

RS
are quality factors of the

primary and secondary sides, respectively.

TABLE II
SIMULATION PARAMETERS OF THE SSIPT CONVERTER FOR ANALYSIS

Fig. 5. Efficiency of the SSIPT converter versus log10 α.

Equations (21) and (22) are the criteria of critical load
impedance matching point that achieves the maximum effi-
ciency for an arbitrary operating frequency, ω. Maximum ef-
ficiency, ηopt , in (20) is frequency dependent. For near constant
values of RP and RS within a certain range of operating fre-
quency, it is possible to achieve a higher efficiency as operating
frequency, ω, increases, due to higher QP and QS .

B. Load Impedance Matching Range for Efficiency
Optimization

Because the modulation of the active rectifier given in Fig. 3
cannot alter Req and Xeq independently, it is impractical for
the SSIPT converter to operate exactly at Req,opt and XS,opt in
order to achieve the maximum efficiency. We will find a range
of Req and Xeq , which gives acceptable efficiency performance.
In doing so, we define a factor, α, representing normalized Req
with respect to Req,opt , i.e.,

α =
Req

Req,opt
(23)

and a factor, β, representing the deviation of the normalized Xeq
from 0, i.e.,

β =
X 2

S

R e q

Req,opt
. (24)

As an illustration, the efficiency of an SSIPT converter using the
parameters shown in Table II is plotted versus log10 α at some
values of β < 1 as shown in Fig. 5. A range of α and β can
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TABLE III
OPERATION OF THE SSIPT CONVERTER

be selected for an acceptable minimum efficiency, say, 85.7%.
Thus, 0.5 < α < 2 and β < 1 are selected. Unless specified
otherwise, the parameters given in Table II will be used for the
rest of this paper.

IV. DESIGN FOR BATTERY CHARGING

A. CC Charging

It is well known that an SSIPT converter can achieve LIC
for CC charging at a high-efficiency point [5], [10], [13], [15].
The design methodology of the SSIPT converter with constant
output current has been studied in [15], [28]. Because the range
of battery resistance in CC charging is usually narrow, therefore
by locating the resistance range of CC charging within the load
impedance matching range of the SSIPT converter, high effi-
ciency can be achieved for CC charging, as shown by the red
curve in Fig. 10(a). Precise output current is not necessary for
CC charging. Therefore, the SSIPT converter can operate with-
out any modulation, i.e., the active rectifier can operate similar
to a passive rectifier with the following condition:

θCC = π (25)

and the inverter can operate with high efficiency at a fixed fre-
quency given by

ωCC = ωP . (26)

The operation of the SSIPT converter in CC charging is sum-
marized in Table III.

Theoretically, if component losses are neglected, the output
current is given by

IO ≈ 8
π2

VI

ωP M
. (27)

Substituting (22), (25), and (26) into (14), the output voltage at
the load matching point can be obtained as

GV,opt ≈
√

LS

LP
(28)

provided that component losses are neglected, and the load qual-
ity factors in the primary and the secondary sides are identical,
i.e., ωLP

RP
= ωLS

RS
.

It should be noted that if primary resonant frequency, ωP ,
and secondary resonant frequency, ωS , are identical, then input
impedance, Zin , of the SSIPT converter is purely resistive. To
provide a slightly inductive input impedance for operating the
primary inverter at ZVS, ωP can be slightly lower than ωS

[15], [28].

Fig. 6. Voltage transfer ratio versus load resistance under various operating
frequencies.

B. CV Charging

For CV charging, a precisely regulated output voltage is
needed to charge the battery. An extra over-voltage protection
is usually implemented for safe operation. The efficiency of
the SSIPT converter should also be optimized using impedance
transformation for the wide load range of CV charging. For the
SSIPT converter with the active rectifier shown in Fig. 2, we
have two independent control parameters, which are as follows:

1) the operating frequency, ω, of the inverter;
2) the conduction angle, θ, of the active rectifier.
Although we can readily achieve CV output by controlling ω

and θ, yet we first restrict the range of ω by considering over-
voltage protection. The charging power will keep on increasing
during CC charging until the battery voltage reaches the charge
threshold value. At the point of reaching the maximum charging
power, it is safer for the inverter to switch to another operating
frequency, where over-voltage will not occur, even if there is no
control in the secondary active rectifier. Fig. 6 shows the voltage
transfer ratio versus load resistance under different operating
frequencies. In CC charging, the SSIPT converter operates at
ωP to achieve a constant output current, as the solid red curve
shows. In CV charging, if the operating frequency is more than
ωH , the voltage transfer ratio, GV , will always be smaller than
GV,opt , as shown by the solid blue curve and dashed magenta
curve. Frequency ωH = ωP√

1−k
is the operating frequency of

the SSIPT converter at which an LIV output is achieved [15].
Therefore, we can switch the operating frequency from ωP to
ωH once the maximum charging power is reached for a safe
charging operation. During CV charging, the control of ω will
start from ωH .

Because winding loss and converter loss are inevitable, prac-
tical voltage transfer ratio, GV , will always be smaller than
GV , o p t =

√
L S
L P

. Specifically, GV is designed at 0.9
√

L S
L P

≈ 1.09

as an example. Fig. 7 shows the variation of voltage trans-
fer ratio, GV , versus operating frequency, ω, and conduc-
tion angle, θ, under different load conditions. The operating
points {(ω, θ)} for achieving GV = 1.09 are plotted in three-
dimensional (3-D) space as red curves shown in Fig. 7
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Fig. 7. Variation of voltage transfer ratio, GV , with respect to operating frequency, ω, and conduction angle, θ, for (a) RL = 10 Ω, (b) RL = 30 Ω, and
(c) RL = 100 Ω.

Fig. 8. Variation of efficiency η with respect to operating frequency, ω, and conduction angle, θ, for (a) RL = 10 Ω, (b) RL = 30 Ω, and (c) RL = 100 Ω.

under different loading conditions. Fig. 8 shows the correspond-
ing variation of efficiency η. Among operating points {(ω, θ)},
we can identify the locations in the load impedance matching
range, as illustrated in Fig. 5, to achieve a constant output volt-
age with high efficiency.

Therefore, the following two-step procedure can be per-
formed to derive the operating points for CV charging using
a numerical calculation tool such as MATLAB.

1) Given a constant GV , solve (14) to find all the solutions
Ai{(ω, θ)} for each load RL,i in CV charging, where
ω > ωH and 0 < θ < π are the constraints.

2) Substitute Ai{(ω, θ)} into (16) and search for the max-
imum efficiency, and find the optimum operation points
Ai(ωCV , θCV) for each load RL,i in CV charging.

With these numerical solutions, the operating points in the
load impedance matching range can be found to achieve CV
output. Fig. 9 demonstrates the solution in a 2-D space. Solid
curves in different colors represent possible solutions to achieve
constant GV for different load conditions. Points marked with
“x” are the optimum operating points having the maximum
efficiency, for RL varying from 15 to 160 Ω as indicated by
arrow direction.

Because battery charging is a slow process, the dynamic re-
sponse is not a critical issue for efficiency optimization. It is
feasible to implement the control with the optimum operating
point set at (ω, θ), as shown in Fig. 9, using entries of RL

through lookup table. The SSIPT converter can achieve fast and
precise control of constant output voltage by modulating θ in

Fig. 9. Numerical solutions shown as a curve for some selected load resis-
tances to achieve a constant GV = 1.09, and the optimum operating points
marked as “x” to have high efficiency.

the receiver side for CV charging. To maintain high efficiency
during the whole CV charging process, the information of load-
ing resistance can be fed back to the transmitter side wirelessly
for the control of ω.

C. Comparison of Efficiency and Load Impedance

Efficiency comparison between the SSIPT converter designed
with the conventional approach in [15], which does not have
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Fig. 10. Comparisons between the proposed approach in this paper and the
conventional approach in [15] for (a) efficiency, and (b) α and β versus RL .

efficiency optimization for the wide load range during CV
charging, and the SSIPT converter developed in this paper
will be presented in this section. As shown in Fig. 10(a), the
efficiency degrades significantly as the battery resistance in-
creases rapidly during CV charging, due to mismatch in the
load impedance. On the basis of the proposed approach in
Section IV-B, the novel SSIPT converter can achieve con-
stant output voltage for CV charging, with the ability to trans-
form load impedance within a matching range. The efficiency
is kept high as shown by the blue solid curve or blue-dash
curve in Fig. 10(a). The blue solid curve is obtained by simu-
lation with constant resistances RP and RS , while the blue-
dash-dot curve corresponds to constant quality factors, QP

and QS .
As discussed in Section III-B, a load matching range can be

defined by 0.5 < α < 2 and β < 1. From Fig. 10(b), it can be
observed that the load impedance is located within a matching
range while using the proposed approach, as the solid blue curve
and the solid cyan curve show. However, as a comparison, the
load resistance of the conventional approach deviates from the

Fig. 11. Input phase angle of the SSIPT converter during CV charging process.

TABLE IV
CHARGING SPECIFICATIONS

matching range significantly as shown by the blue dash curve in
Fig. 10(b).

D. Soft Switching

In CV charging, the operation of the secondary active recti-
fier can achieve ZVS as discussed in Section II-B. Substituting
operating points Ai(ωCV , θCV) into (17), the input impedance
can be calculated. With (18), input phase angle ϕ is plotted in
Fig. 11. Since ϕ is always positive, the primary inverter can
always operate at ZVS during the whole CV charging process.

V. EXPERIMENTAL VERIFICATION

A. Experimental Prototype

To verify the efficiency performance of the proposed ap-
proach, an experimental prototype is built according to Fig. 2.
According to the charging profile shown in Fig. 1 and its specifi-
cations given in Table IV, the battery resistance ranges from 12
to 17.3 Ω for CC charging and 17.3 to 173 Ω for CV charging.
System parameters are presented in Table V. An electronic load
is used to emulate the equivalent resistance of the battery.

B. Measured Operating Points, Efficiency, and Waveforms

First, the active rectifier operates as a passive rectifier, and
the inverter operates at ωP

2π = 49.98 kHz to achieve native LIC
for CC charging. Measured output current points (marked with
“�”) are shown in Fig. 13(a). It can be observed that the output
current is nearly constant at 3 A, which satisfies the require-
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TABLE V
SYSTEM PARAMETERS

Fig. 12. Measured operating points at a fixed voltage output of 52 V and the
corresponding load resistances.

ment of CC charging. Second, after the battery voltage reaches
52 V, CV charging should be employed. Following the pro-
posed operation approach in Section IV-B, conduction angle,
θ, of the active rectifier and operating frequency, ω, of the in-
verter are adjusted to achieve CV output with the optimum ef-
ficiency performance. The measured operating points (marked
with “©”) are shown in Fig. 12, with ω varying from 59 to
74 kHz and θ from 168◦ to 108◦. The corresponding output
voltages (marked with “©”) are kept at 52 V, as shown in
Fig. 13(a). The output voltage satisfies the requirement of CV
charging.

The input dc power and output dc power are measured using
a precision power scope, Yokogawa PX8000. The measured
efficiency points of the whole charging process are shown in
Fig. 13, within the highlighted orange box. Efficiency points of
CC charging (marked with “�”) are approximately 86%. The
measured efficiency points of CV charging (marked with “©”)
are from 85% to 89%. As a comparison, the measured efficiency
points (marked with “
”) using the conventional approach [15]
to achieve constant output voltage are also shown in Fig. 13,
which decreases significantly as the battery resistance increases.
To sum up, a high efficiency can be maintained for the whole
charging process by using the proposed approach. The higher
efficiency during CV charging than CC charging is attributed to

Fig. 13. (a) Measured output current and voltage versus battery resistance.
(b) Measured efficiency versus battery resistance.

the reduced conduction loss of using the active rectifier and the
higher quality factors of the transformer coils at higher operating
frequencies.

Waveforms of the inverter and the active rectifier at the start
and end of CV charging are shown in Fig. 14(a) and (b), re-
spectively. It can be observed that ZVS is achievable both in the
inverter and the active rectifier. Efficiency measurements at the
start and end of CV charging are shown in Fig. 15(a) and (b),
respectively.

C. Transient Response Against Variations of Load and Input

The closed-loop control demonstrated in Section IV-B has
been implemented for CV charging. Transient waveforms for
step changing of load resistance and input voltage are shown
in Fig. 16. The output voltage, VO , and output current, IO , are
measured and shown as CH1 in dark blue and CH2 in light
blue. The control variables are observed from digital-to-analog
outputs, where CH3 in magenta and CH4 in green represent the
conduction angle, θ, and operating frequency, ω, respectively. It
can be observed that VO is tightly regulated by the fast receiver-
side direct control of θ. Slower control of ω in the transmitter
side is based on the wireless feedback of the load information
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Fig. 14. Waveforms of the inverter and the active rectifier circuits at (a) the start and (b) the end of CV charging.

Fig. 15. Screen capture of efficiency measurement at (a) the start and (b) the
end of CV charging.

and the lookup table shown in Fig. 12, to locate the optimum
operating point for high efficiency. Fig. 16(b) shows the transient
waveforms when there is a step change of input voltage, VI ,
from 50 to 45 V. Output voltage, VO , can still be maintained
by modulating θ. Because there is no load change, ω remains
unchanged. Therefore, the SSIPT converter may shift slightly
from its optimum operating point if there is fluctuation in the
input voltage.

Fig. 16. Transient waveforms for (a) RL step switching from 40 to 80 Ω, and
(b) VI step switching from 50 to 45 V, RL = 40 Ω.

D. Discussion on Misalignment Issue

For stationary IPT applications of battery charging, the cou-
pling coefficient is usually constant once the positioning process
is finished. It will rarely fluctuate during the charging process.
However, misalignment problem may occur because of low-
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Fig. 17. (a) Measured operating points at a fixed voltage output of 52 V, and
(b) measured efficiency versus load resistance, under k = 0.283 and k = 0.259.

precision positioning, which leads to small variation in the cou-
pling coefficient. Some available solutions can be used to solve
this misalignment problem. First, novel design of coil structure
has been proposed to minimize the variation in the coupling
coefficient due to misalignment to some acceptable levels [29].
Second, good alignment can be ensured using positioning sys-
tems with abilities of self-detection and auto-calibration [30].
Even if a small misalignment occurs in some practical applica-
tions, parameter identification methods of IPT systems can be
used to acquire an accurate coupling coefficient [31]. Moreover,
more sets of operating points under different values of the cou-
pling coefficient can be measured and stored in the lookup table.
Therefore, the closed-loop control against misalignment can still
be realized to achieve constant output voltage and maintain high
efficiency. For example, two sets of (ω, θ) under k = 0.259 and
k = 0.283 are measured in Fig. 17(a), with their corresponding
measured efficiency curves shown in Fig. 17(b).

VI. CONCLUSION

An SSIPT battery charger that permits efficiency optimization
for a wide load range, soft switching of inverter, and active rec-

tifier circuits, no extra dc–dc converter, no extra power switch,
and receiver-side direct control, is analyzed and implemented in
this paper. Different operations are employed for CC charging
and CV charging. A novel operation approach is proposed to
achieve constant output voltage and to ensure load impedance
matching during CV charging, by controlling the operating fre-
quency of the primary inverter and the conduction angle of the
secondary active rectifier. High efficiency can be maintained for
the whole battery charging process.
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