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Optimization of Substation Siting and Connection
Topology in Offshore Wind Farm Based on

Modified Firefly Algorithm
Zhicong Huang , Member, IEEE, Canjun Yuan, Hanchen Ge, and Ting Hou, Member, IEEE

Abstract— To guide the construction of large-scale offshore
wind farms, optimization for substation siting and connection
topology are both necessary, which is a multiobjective
optimization problem. Non-iterative methods are based on greedy
strategies and they are only suitable to optimize the connection
topology. Iterative methods can update the solutions iteratively to
approach the optimum using common optimizers such as particle
swarm and firefly algorithm (FA), which are more adaptive
in multiobjective optimization. Thus, it is feasible to explore
iterative methods to synchronously optimize substation siting
and connection topology. This paper proposes a modified FA
for the optimization of substation siting and connection topology
in a large-scale offshore wind farm. The objective function
comprehensively considers critical factors including substation
siting, partition of wind turbines, connection topology, cable
types, and power loss. The optimization ability of the proposed FA
is enhanced by adopting reproduction and resetting mechanisms
with dynamic hyperparameters. An implementation that bridges
the topological space and Euclidean space is detailed to help
with improving the convexity and continuity of search spaces.
To validate the efficacy, the proposed FA is first tested in an
offshore wind farm with a single substation and then it is applied
in a large-scale offshore wind farm with multiple substations to
demonstrate the synchronous optimization of substation siting
and connection topology.

Index Terms— Connection topology, firefly algorithm, offshore
wind farm, optimization, substation siting.

NOMENCLATURE

G Representation of graphs in adjacency table.
AG The adjacency matrix of G.
Gst The spanning tree of graph G.
V, Vst The vertice set of graph G and Gst.
E, Est The edge table of graph G and Gst.
W, Wst The weight table of graph G and Gst.
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W, w The cost of cables, the cost per unit length
is in the lowercase.

p Type of cable.
n, nos, nwt Number of vertices, OSs and WTs in a

graph.
nwtsub i Number of vertices in the subtree of Gst

that WT i is the root.
nwtfather Number of the father vertices of a WT.
nwtchild Number of the child vertices of a WT.
Sn,p, Un,p, In,p The rated apparent power, voltage and

current of cable type p.
Iwt The rated current of a single WT.
C A cut-set of graph G.
x, D The latent representation of one solution

and its range.
xst, xos The latent representation of cable topol-

ogy, the coordinates of OSs.
Dst, Dex The range of xst and the excluded

solutions.
Gst All possibly spanning trees of G.
f (x) The objective function.
nsearch Number of searches of algorithm.
npop, niter Population size of algorithm, number of

iterations.

I. INTRODUCTION

RENEWABLE wind energy has been rapidly developing
in recent years [1], [2], [3], [4]. For offshore wind

farms, wind power can be exploited with a relatively smaller
environmental impact [5], [6]. However, investment and
construction of large-scale offshore wind farms with multiple
offshore substations (OSs) are still challenging, and the key
problems include optimization of OS siting and connection
topology, as shown in Fig. 1. Literature shows that cable
investment has taken up 9% of total investment in offshore
wind farms [5], and it can be substantially reduced with
an optimized construction scheme, which is significantly
affected by where the OS locates, how the electric cables
connect, and what types of the electric cables are used.
Moreover, power consumption is a long-term factor that also
affects cost-effectiveness. All these critical factors should be
comprehensively considered. Unlike the onshore wind farms,
the cable connections in offshore scenarios are less constrained
by landforms or human activities, which means it is more
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Fig. 1. Typical configuration of offshore wind farms (OS and WT represent
offshore substation and wind turbine respectively).

applicable to investigate an optimization algorithm to solve
the problem.

In the offshore wind farm, the OS siting and connection
topology can be regarded as a minimum spanning tree (MST)
problem. To be specific, the weighting factors of branches
are variable due to the type selection of cables. For the
optimization problem of OS siting and connection topology
in this paper, the domain of definition is all possibly spanning
trees of a fully-connected graph [7], where every pair of
distinct vertices is connected by a unique edge. The complexity
exponentially correlates with the scale of the offshore wind
farm, and thus a brute force enumeration method cannot be
applied. It motivates us to explore an effective algorithm to
optimize the OS siting and connection topology in an offshore
wind farm.

Some optimization methods for offshore wind farms have
been carried out, as shown in Table I, which can usually
be categorized into non-iterative and iterative methods. The
non-iterative methods build the solution directly according to
greedy strategies. And they are mostly modified based on the
typical MST algorithms such as Prim method and Kruskal
method [8]. In the Prim method, the smallest branch in the cut-
set between the result and other vertices is greedily selected
at every step and added to the final result. Dynamic minimum
spanning tree (DMST) in [9] inherits the greedy strategy of the
Prim method, with the consideration of selecting cable types.
In the DMST, the branch in the cut-set that brings the smallest
increment of the total cost is selected at every step rather than
the smallest-weighted branch. However, it should be noted
that the MST-based methods are only suitable for optimizing
connection topology in offshore wind farms. In [10], to extend
the optimization for OS siting, a fuzzy C-means clustering
algorithm (FCM) is used in addition to a modified MST
algorithm. The FCM is responsible for partitioning wind
turbines (WTs) and setting the center of each partition as
the OS location, while afterward, the MST optimizes the
connection topology. However, this two-step optimization
method may miss out on the optimum solutions since the
partition of WTs and the connection topology optimization
are deeply coupled. For the non-iterative methods, the greedy
choices for the smallest cost increment in each step do not
mean the global optimum under certain circumstances, and the

global optimum may not be found due to missing backtracking
strategies.

Alternatively, iterative method is another kind of method
for this problem which iteratively approaches the global
optimum using common optimizers, e.g. stochastic gradient
descent (SGD), genetic algorithm (GA) [11], particle swarm
optimization (PSO), firefly algorithm (FA), etc. In these
optimizers, one or several solutions are first initialized in
the search space, and the solutions are then updated step
by step according to the objective function and boundary
conditions. Different updating schemes are adopted in these
methods, e.g. in SGD [12], only one solution is introduced,
and the gradient of the objective function determines the step
size and direction. PSO and FA abandoned the dependency
of gradients and introduced a group of solutions updating
respectively. In PSO [13], the update of solutions depends on
the historical best of each individual and the entire group, and
in FA [14], the solutions are attracted by each other, with their
attractiveness proportional to the objective function. Generally,
SGD is appropriate for derivable objective functions, PSO is
easy to be implemented and fine-tuned, and FA is more capable
of local searches and converges faster. In the optimization
problem for offshore wind farms specifically, the solutions
of cable connection topology and substation siting have to
be transformed into Euclidean space vectors before they can
be updated by optimizers. Therefore, various transformation
schemes are proposed [6], [15], [16], [17], [18], [19], and
different optimizers are selected based on the transformed
solution space characteristics.

Qi combined the Voronoi diagram to improve the partition
process of the offshore wind farm and used Q-learning to
optimize the hyperparameters of the PSO to obtain better
optimization results [20]. Yuan proposed an improved partheno
genetic algorithm to optimize the topology of the large-scale
offshore wind farm collection system and studied the impact
of voltage level on the topology optimization of the collection
system [21]. However, the current studies of iterative methods
for synchronous optimization of OS siting and connection
topology are not thorough enough, and the transformed
search spaces in these works are not smooth enough to
make the optimizers converge stably. Therefore a considerable
gap between the global optimal and the final solution
remains.

To this end, there are still challenges in optimizing OS
siting and connection topology in offshore wind farms with
multiple OSs. The non-iterative methods are only suitable for
optimizing the connection topology and the greedy strategies
they take are incorrect under some circumstances. For iterative
methods, their precision is yet to be improved, and the
synchronous optimization of both OS siting and connection
topology is missing. To guide the construction of a large-
scale offshore wind farm with multiple OSs, a modified
FA method has been developed to optimize OS siting and
connection topology, and the major novelties and contributions
are summarized as follows.

1) Synchronous optimization of OS siting and connection
topology is enabled for the large-scale offshore wind
farm, and critical factors including OS siting, WTs
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TABLE I
AN OVERVIEW OF OPTIMIZATION METHODS FOR CABLE CONFIGURATION OF OFFSHORE WIND FARMS

Fig. 2. An example of graph and spanning tree.

partition, cable topology, cable types, and power loss
are comprehensively considered.

2) Optimization ability of the proposed FA method
is enhanced by adopting reproduction and resetting
mechanisms with dynamic hyperparameters.

3) To help with improving the convexity and continuity of
search spaces for the modified FA method, implementa-
tion to bridge the spanning tree and the location of OS
to the Euclidean space are detailed.

To demonstrate the improvement in performance, the modified
FA method is first tested in an offshore wind farm with a single
OS. Then, it is applied in a large-scale offshore wind farm with
multiple OSs to validate the synchronous optimization of OS
siting and connection topology.

The rest of this paper is organized as follows: Section II
presents the mathematical model of offshore wind farms and
introduces the objective function with boundary conditions.
Section III first bridges the spanning tree and the Euclidean
space, and then details the proposed modified FA method.
The optimization framework is presented. Section IV carries
out the experiments to evaluate the proposed method in both
offshore wind farms with single and multiple OSs. Finally,
Section V concludes this paper.

II. MATHEMATICAL MODEL

A. Mathmatical Representation of Graphs and Spanning
Trees

The offshore wind farms can be represented as a fully-
connected undirected weighted graphs, given by G =

(V, E, W ), in which the vertices V are OSs and WTs, and
the edges E are the possible connections with their weight W
as the cost of cable. Meanwhile, a cable connection scheme
can be represented as a spanning tree Gst, which is a directed
subgraph of G. In spanning trees, the root is OS and each WT
is pointed by only one another vertex.

In graph theory, G can be represented as either adjacency
matrices or adjacency tables. A graph as well as its spanning
tree shown in Fig. 2 is taken as an example. Suppose that n
is the number of OSs and WTs, the adjacency matrix AG is
a n × n square symmetry matrix, and its element at i th row
and j th column represents the weight between vertex i and j .
Alternatively, the adjacency table is easier to handle spanning
trees and takes up fewer spaces. It contains a set of vertices V
and two arrays of sets Ek and Wk (k ∈ V ) representing edges
and weights respectively. In Fig. 2(a), the adjacency table of
the spanning tree Gst is given by

Vst = {1, 2} ⊂ V (1){
Est 1 = {2} ⊂ E1

Est 2 = {3, 4} ⊂ E2
(2){

Wst 1 = {0.3} ⊂ W1

Wst 2 = {2.0, 0.5} ⊂ W2
(3)

Two important concepts in graph theory are highlighted as
follows.

1) Cut-set: A cut C = (S, T ) is a partition of the vertices
V of a graph G = (V, E, W ) into two disjoint subsets
S and T . The cut-set of a cut C = (S, T ) is the set of
edges that have one endpoint in S and the other endpoint
in T.

2) Minimum spanning tree (MST): The MST of a graph
is the spanning tree with the smallest weight. The Prim
method is to find out the MST by greedily selecting the
minimum edge in the cut-set.

B. Objective Function

The object of this paper is to optimize the cost of cable in
offshore wind farms, which means finding out the spanning
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tree Gst and the location of OSs xos with the lowest cost
of cable in the graph G. Therefore, the objective function is
to minimize the cost of cable, which includes cable purchase
cost Wpur, cable laying cost Wlay and power loss Wloss, and
its expression can be given by

min
Gst,xos

(Wtotal) = min
Gst,xos

(Wpur +Wlay +Wloss). (4)

1) In a wind farm with nwt wind-turbines and nos
substations, the cable purchase cost Wpur is proportional
to the length:

Wpur =

nwt∑
i=1

wp(i)L i (5)

where p(i) is the type of cable i , wp is the price per
unit length of the type p cable, and the length of cable
i is L i . According to [22], wp can be calculated as

wp = Ap + Bp × e
C p Sn,p

108 (6)

Sn,p =
√

3 Un,p In,p (7)

where Ap, Bp, and C p are cost constants,
Sn,p, Un,p, In,p is the rated apparent power, voltage and
current of cable type p.

2) The cable laying cost Wlay is also proportional to the
length, given by:

Wlay =

nwt∑
i=1

wlayL i (8)

wlay is the cable laying cost per unit length
required for cable installation, and its standard is
wlay = 360 CNY/m [23].

3) Wloss refers to the cost caused by cable power loss in
the whole life cycle of the offshore wind farm, and its
specific expression is:

Wloss = 3TY

nwt∑
i=1

Ce(nwtsub i Iwt)
2(rp(i)L i )(8760c f )

(9)

where TY is the expected life of the wind farm, and it
is 25 years; Ce is the cost corresponding to unit energy
loss, its value is 0.85 CNY/kW; nwtsub i is the number
of vertices in the subtree of Gst that WT i is the root;
Iwt is the rated current of a single WT, its value is 44 A,
and all the WTs in the wind farm have the same rated
current; rp is the unit resistance of the p type cable;
c f is the full capacity coefficient of the wind farm in a
year, it is 0.3.

C. Boundary Conditions

The boundary conditions define the solution spaces of
this optimization problem, including electrical constraints and
geometric constraints.

1) First, the current of a cable should be no greater than
its rated current, which can be represented as

nwtsub i Iwt ⩽ In,p(i). (10)

Fig. 3. An example of cable crossing constraint.

2) Second, each WT should have one and only one father
vertex, such that the solution is a tree, given by{

nwtfather i = 1
nwtchild i ⩾ 0

(11)

3) Third, since cross-laying cables will increase installation
costs and later maintenance costs, cable crossing should
be avoided in the topology design of wind farms, given
by

Ei ∩ E j = ∅ (12)

where Ei and E j are two different edges in the spanning
tree.
During simulation experiments, matrix calculations can
be used to determine whether two cables intersect.
Assuming that the four endpoints of two cables in Fig. 3
are A, B, C and D, two specific parameter values can
be calculated according to the coordinates of the four
endpoints, and the formula is as follows:[

x1 − x2 x4 − x3
y1 − y2 y4 − y3

]
·

[
µ

ν

]
=

[
x4 − x2
y4 − y2

]
(13)

If the coefficients µ and ν belong to (0, 1), it means that
the cable AB crosses the cable CD, and the intersection
is not an endpoint.

III. OPTIMIZATION METHOD

A. Transformation of Solution Space

As is illustrated in Section I, meta-heuristic algorithms only
work in Euclidean spaces D ⊂ Znwt+2nos . To optimize OS
siting and connection topology synchronously, a solution in
Euclidean space x should include information of both the
spanning tree and the location of OS. Thus, the vector in
Euclidean space x can be divided into two parts as given by

x = [xos, xst],

xos ∈ Dos ⊂ Z2nos , xst ∈ Dst ⊂ Znwt (14)

where xos is the OS coordinates, and xst is the encoding of
cable topology. Therefore, a transformation scheme between
the connection topology and Euclidean space vectors should
be carried out, given as

Dst ⇄ Gst, (15)

where Gst is all possibly spanning trees of G.
Such a transformation scheme is crucial to the convexity

and continuity of search spaces, which affects the convergence
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Fig. 4. Decoding process of a wind farm with single OS.

Fig. 5. Decoding process of a wind farm with two OSs.

performance of the algorithm. In this section, a transformation
scheme is proposed. Instead of focusing on the structure of
the spanning tree itself, the proposed scheme focuses on the
order of decisions in the tree’s generation process, which
corresponds to the greedy strategies in the Prim method. In this
method, each element of the encoding x stands for a decision
while generating the spanning tree.

The decoding process is illustrated in Algorithm 1. In order
to illustrate the decoding method specifically, a simple wind
farm G with 3 WTs and 1 OS is shown in Fig. 4, in which a
Euclidean space vector xst = [2, 3, 1] is to be decoded into a
spanning tree Gst. First, the OS vertice is selected as the root

of Gst. Then xst is traversed with Gst generated step by step.
For the i th step, the cut set between the current spanning tree
Gst i and the rest of G is selected, which can be depicted by

C(Gst i , G − Gst i ), (16)

and the xi th smallest edges in this cut set is add into Gst i .
This process has been detailed in Fig. 4(a), where the orange
represents Gst, the green edges are the cut-set C . Finally a
complete Gst is generated.

Detailed analyses of the proposed transformation scheme
are illustrated as follows:

1) The mapping relationship between spanning trees and
search space vectors in the proposed transformation
scheme is evaluated. First, this scheme can decode
all possible spanning trees, that is, all spanning trees
have their corresponding decision variables, and no
spanning trees will be omitted. In the graph example
of Fig. 4, there are 3× 4× 3 = 36 different encodings
and 16 different spanning trees, and the spanning tree
encoding [2, 3, 1] is also equivalent to [3, 4, 1], [1, 3, 2],
etc. Morover, the spanning tree that a vector represents
is unique, since the proposed transformation scheme has
ensured that any edges will not be chosen repeatedly and
the edges that are not connected to the spanning tree will
not be selected. To be summarized, a many-to-one onto
mapping is created by the proposed method from the
search space vectors into spanning trees, which ensures
the optimal solution can be transformed into the search
space.

2) For an evaluation of the convexity, the boundary of
search space in the proposed transformation scheme
is then calculated. To be specific, the decision tree of
the decoding example is shown in Fig. 4(b), where the
choices at each step are listed as branches. It can be
noted that the range of the i th element of the search
space vector xst i is equal to the number of options in
the cut set. Therefore, in a fully-connected graph G, the
range of xst can be calculated by

Dst = {xst ∈ Znwt |1≤ xst i ≤ size(C(Gst i , G − Gst i ))},

size(C(Gst i , G − Gst i )) = i(n − i), (17)

where Gst i means the spanning tree with i vertices, n
is the number of vertices. Therefore, D is convex since
each of its dimension is convex. However, (12) illustrates
that the solutions which has crossing cables Dex should
be excluded, which breaks the convexity. This problem
is solved by mapping the vectors from Dex into the legal
domain using random strategies, given by

Dex
random
−−−−→ Dst − Dex (18)

such that the solution space is convex.
3) The proposed scheme are also capable in the multi OS

senerios, where the partition of WTs can be represented
in a single Euclidean space vector. In the proposed
scheme, multiple spanning trees can be represented in
one single vector. For instance, a simple wind farm
with 2 OSs and 2 WTs is shown in Fig. 5, in which
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Algorithm 1 The Decoding Process of Vectors
Input: The vector xst to be decoded, the adjacency table of

graph G, the index of OS vertex.
Output: The adjacency table of the spanning tree Gst.

1: The OS vertex is selected as the root of the spanning tree
Gst.

2: for i ← 1 to length(xst) do
3: The cut-set C = (Gst, G − Gst) between the spanning

tree and other vertices are selected.
4: Find out the xst i th smallest weight in the cut-set C ,

and add it into Gst.
5: end for

Algorithm 2 Conventional Firefly Algorithm
1: Generate an initial population of N fireflies x.
2: Objective function f (x).
3: for t ← 1 to MaxGeneration do
4: for i ← 1 to N do
5: for j ← 1 to N do
6: if f (x( j)) > f (x(i)) then
7: Get a new firefly according to (20).
8: if f (x′(i)) > f (x(i)) then
9: Replace firefly x(i) with firefly x′(i).

10: Update the global optimal firefly xbest.
11: end if
12: end if
13: end for
14: end for
15: end for

a Euclidean space vector xst = [1, 2] is to be decoded
into two spanning trees Gst. Similar with the single OS
scenerio, the OSs are selected as roots initially, and the
vector is traversed with the spanning trees generated step
by step. Such that, the connection between the spanning
trees are avoided.

B. Modified Firefly Algorithm

In this section, the modified FA method is proposed to
further improve the optimization ability of the conventional
FA.

The conventional FA is a metaheuristic algorithm inspired
by the flashing behavior of fireflies. In a firefly colony, there
are n fireflies distributed in the solution spaces with their light
intensity proportional to the objective function, as given by

Ii ∝ f (x(i)) = −Wtotal(x(i)), x(i)
∈ D (19)

In each iteration, the fireflies are attracted by light and move
toward each other, as is given by:

x′(i)
= x(i)

+ β0e−γ r2
i j (x( j)

− x(i))

+ α(rand− 0.5), if I j > Ii (20)

ri j = ∥x(i)
− x( j)

∥, (21)
rand ∼ U (0, 1) (22)

Algorithm 3 Modified Firefly Algorithm
1: Generate an initial population of npop fireflies x.
2: Objective function f (x).
3: for t ← 1 to niter do
4: Create a new firefly population y.
5: for i ← 1 to npop do
6: for j ← 1 to npop do
7: if f (x( j)) > f (x(i)) then
8: Get a new firefly according to (23).
9: if f ( y′(i)) > f ( y(i)) then

10: Replace firefly y(i) with firefly y′(i).
11: Update the global optimal firefly xbest.
12: end if
13: end if
14: end for
15: end for
16: Sort x and y based on objective function, select new

firefly population x.
17: end for

Fig. 6. A comparison between the conventional FA and modified FA.

(20) is the update formula that the active firefly i move
towards each object firefly j respectively, where ri j is the
Euclidean distance between them. α is disturbance step size,
β0 is attraction factor, and γ is light absorption coefficient.
The second term of (20) represents the attractiveness, and the
third term is random noises from the uniform distribution.

To be specific, an example is shown in Fig. 6, which
illustrates the movements of an active firefly that lives in a
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5-individual colony in the two-dimensional solution space.
The orange points are the static object fireflies, and the green
points are the motion trail of the active firefly in the current
iteration. The black numbers are the objective function value.
In the conventional FA shown in Fig. 6(a), the movements of
a firefly are accumulated and the objective function value of
its distination is pre-estimated every time before it starts. The
firefly takes off only if the destination is better.

However, for the optimization of connection topology and
OS siting using conventional FA, a considerable gap between
the solution and global optimum remains. Firstly, in the search
space under the proposed transformation scheme, the distance
between two solutions cannot be simply measured using
Euclidean distance, thus modifications to the update formula
are required. Secondly, the update of a firefly at every iteration
depends on the sequence of its objects, which would result in
a decrease of stability. Thirdly, a reproduction and elimination
mechanism is missing in the conventional FA method.

In view of these problems, three major modifications have
been developed to improve the FA, which are summarized as
follows, and the graphical example is shown accordingly in
Fig. 6(b).

1) The update formula is further improved by introducing
dynamic hyperparameters [24], given by

y′(i)
= x(i)

+ (βmin + (βmax − βmin)e
−γt r2

i j )

St (x( j)
− x(i))+ αt (rand− 0.5), if I j > Ii

(23)

where the parameters αt , β, γt are dynamically updated
using different strategies including sinusoidal chaotic
functions, geometrical annealing, amplitude limit and
random disturbance factor St etc. Such that, the ability
of global search and local search are more balanced and
powerful. The specific analytic expression of parameters
is as follows.

γt =
t
M
∗ sin(γtπ) (24)

αt = 0.97(400∗ t
M ) (25)

β = (βmin + (βmax − βmin)e
−γt r2

i j )St (26)

where t is the current number of iterations, M is the
maximum number of iterations and St is a random
number on the [0,1] interval. The upper limit βmax
and lower limit βmin are determined based on specific
problems. After trial and error in the subsequent
simulation scenarios, we selected appropriate values.
The reason why the disturbance step size is designed
in this way is to have αt = 0.02 when the number of
iterations reaches half. This can ensure that the algorithm
focuses on global search in the first half of the iteration
cycle and local search in the second half of the iteration
cycle.

2) A resetting mechanism is introduced. In each iteration,
fireflies in the modified FA always go back into the
initial position first and head off for the next firefly. The
firefly is finally ended up at the distination that accounts
for the highest objective function value. As is shown in

Fig. 6(b), the distination toward the firefly 4 is the best,
thus the firefly 1 finally moves toward 4. As a result, the
sequence of object fireflies has no impact on the final
position of the active firefly in the modified FA, which
may help reduce the step sizes and increase stability.

3) A reproduction mechanism is introduced. Fireflies in
the modified FA always replicate themselves at the
initial position while heading off and get filtered every
generation. As is shown in Fig. 6(b), the firefly 1 is
ended up with the object function value 32, and its
clone 1’ is left at the initial position. Therefore, the
population of the colony will be doubled at the end of
this generation. The colony is then ranked by objective
function value and the last half is eliminated. Such a
mechanism may introduce competency between fireflies
and improve precision.

To be summarized, the processes of conventional FA and
modified FA are shown in Algorithm 2 and Algorithm 3
respectively.

C. Optimization Framework

The structure of the overall optimization framework is
shown in Fig. 7 using a program flow chart and UML
class diagram respectively, in which the former describes the
simulation logics and the latter defines the data structures. The
main process of the flow chart as follows:

1) Each firefly will move towards all other individuals that
are brighter than itself during its search. After moving
several times, each firefly will receive the brightest new
individual, which will be cached.

2) Each iteration will perform a double loop operation, and
then there will be an original colony and a cache colony.
Sort the individuals of these two colonies based on their
cost, and select the npop individuals with the lowest cost
to form a new colony for use in the next iteration. The
search will end when the maximum number of iterations
is reached.

3) When sorting individuals, the spanning tree structure
is first decoded based on each individual’s decision
variable, and then the cost of the spanning tree is
calculated using the objective function of (4).

As is shown in Fig. 7(b), 4 crucial components are included:
the firefly colony, fireflies for spanning trees, weighted graphs
and the spanning trees. Detailed explanations are as follows:

1) WeightedGraph is the standard data structure for the
topology of offshore wind farms as is illustrated in
Section II-A, in which the adjacent table and matrix
are included, together with the initializer and conversion
method.

2) SpanningTree is the subclass of WeightedGraph and
represents a detailed connection scheme. The cable type
selection and the cost calculation are included.

3) STFirefly is the single firefly in the solution space of the
Modified FA. It can be decoded into spanning trees and
calculates the cost. The update formula of the Modified
FA is also included in the member methods.

4) FireflyColony is the colony of fireflies that controls
the colony to reproduce, update and eliminate. The

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 14,2024 at 07:33:11 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: OPTIMIZATION OF SUBSTATION SITING AND CONNECTION TOPOLOGY IN OFFSHORE WIND FARM 813

Fig. 7. Overall optimization framework.

initializer for all the fireflies and the monitor of the
optimization process are also included.

Since a virtual firefly colony is defined, the movements of
the fireflies are finally simulated according to Fig. 7(a). For
every generation, each firefly reproduces itself at the starting
point, moves towards the other fireflies, resets and finally ends
up at the best destinations. At the end of the generation, the
colony is ranked by objective function value and the last half
is eliminated.

IV. EXPERIMENTAL EVALUATION

Based on the optimization algorithms and framework
introduced in Section III, we will demonstrate their feasibility
and performance through simulation experiments. We conduct
our validation experiments using MATLAB 2021b based on

TABLE II
POWER PARAMETERS OF 66 KV AC CABLE

i9-12900K CPU hardware support. For the first batch of
experiments, we generated a wind farm with 40 WTs using
random number seeds and equipped it with 1 OS. The second
batch of experiments also generated a wind farm with 80 WTs
using random number seeds and equipped it with 2 OSs.
We repeated each group of experiments in each batch 10 times
and chose the best one as the final result of this method. The
capacity of a single WT is 5 MW and the working voltage is
66 kV. The selectable types of 66 kV cables and their power
parameters are shown in Table II.

A. Single OS Scenarios

First, the experiment is carried out in wind farm
1 consisting of 1 OS and 40 WTs to investigate whether the
modified FA algorithm has improved performance compared
to conventional algorithms under the same optimization
framework. In wind farm 1, the location of WTs is randomly
selected using random number seeds on a grid with the unit
size 100m× 100m and a rectangular boundary 12km× 10km.

In addition, three optimizers are respectively implemented
and evaluated on the Matlab platform, including PSO,
the conventional FA and the modified FA. The detailed
hyperparameter settings of the 3 optimizers are fine-tuned for
the best performance. PSO uses time-varying inertia weight
and time-varying acceleration coefficients [25] to update
parameters, conventional FA sets its attraction factor β0 to
1.5, while the βmin and βmax of the modified FA’s attraction
factor are 1.0 and 2.0.

In order to make the comparison between different
algorithms fair enough, we defined the number of searches
nsearch to measure the algorithms. PSO belongs to the single
cycle optimization algorithm, so its nsearch is equal to npop ×

niter, FA belongs to the double cycle optimization algorithm,
so its nsearch is equal to n2

pop × niter. The nsearch is set as
basically equal in each pair of experiments.

When decoding decision variables in Euclidean space into a
spanning tree, the optimization framework will simultaneously
record the length of each selected cable and the number of
wind turbines it converges on. Based on the rated current
of a single WT, the current flowing in each branch can be
calculated, and the appropriate type of cable can be selected
by referring to Table II. Using (5), (8) and (9), the three costs
of a wind farm can be calculated, i.e. Wpur, Wlay, and Wloss.
Then, the total cost of a wind farm Wtotal can be calculated
based on (4). In the final optimal solution diagrams, we use
four different colors and linestyles to represent different types
of cables.

The final experiment results of wind farm 1 are shown in
Table III and Fig. 8. Experiment results show that the modified
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TABLE III
COMPARISON OF THE SOLUTIONS OF DIFFERENT METHODS FOR WIND FARM 1

Fig. 8. Comparison of optimal solution diagrams of different methods for wind farm 1 (red: 70 mm2, green: 95 mm2, blue: 150 mm2, magenta: 240 mm2).

FA is the best in terms of purchase cost, laying cost, and power
loss cost, and the total cost of the modified FA-based solution
has been reduced by 3.93% and 5.91% compared with PSO
and the conventional FA, which indicates a closer step into
the global optimum and an improvement of precision in this
scenario.

B. Multiple OS Scenarios

Then, the experiment is carried out in the larger wind farm 2
consisting of 2 OSs and 80 WTs to investigate which method
performs best under different combinations of algorithms and
frameworks. In wind farm 2, the location of WTs is selected
randomly using random number seeds on a grid with the unit
size 1km× 1km and a rectangular boundary 15km× 10km.

Three optimizers including PSO, the conventional FA and
the modified FA are also evaluated respectively in wind farm 2,
and the hyperparameter setting is the same as the experiment
for wind farm 1. The conventional framework using FCM
and the synchronous optimization framework are both applied.
In the former framework, FCM partition is first used in
which OS siting and connection topology are optimized

respectively. In this case, many possible topological solutions
are abandoned, which reduced the size of the topological
space and was obviously not conducive to the search of
subsequent optimization algorithms. In the latter, an end-to-
end strategy is applied and all the optimization factors are
optimized, which ensures that the topological space is not
reduced.

The final experiment results of wind farm 2 are shown in
Fig. 9 and Table IV. The final total cost of the modified FA +
FCM is 206.9 MCNY, which is cheaper than the 213.7 MCNY
of PSO and 223.4 MCNY of conventional FA + FCM, and
the total cost is reduced by 3.18% and 7.39%. The total cost
of the synchronous modified FA’s solution is 205.5 MCNY,
which is 3.83% and 8.01% cheaper than that of PSO + FCM
and conventional FA + FCM, and is 5.95% and 2.33% cheaper
than that of synchronous PSO and synchronous conventional
FA respectively. The cost reduction verifies the applicability
and accuracy of the proposed algorithm and framework in the
multi-OS scenarios.

According to the experimental results above, the proposed
modified FA algorithm with a synchronous framework
achieves better performance than the conventional methods,
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Fig. 9. Comparison of optimal solution diagrams of different methods for wind farm 2 (red: 70 mm2, green: 95 mm2, blue: 150 mm2, magenta: 240 mm2).

TABLE IV
COMPARISON OF THE SOLUTIONS OF DIFFERENT METHODS FOR WIND FARM 2

which can further reduce the construction cost of offshore
wind farms.

V. CONCLUSION

A modified FA for the synchronous optimization of OS
siting and connection topology in a large-scale offshore wind
farm is proposed. Critical factors including OS siting, partition

of wind turbines, connection topology, cable types, and power
loss are comprehensively considered in the objective function.
Compared with conventional FA, by adopting reproduction
and resetting mechanisms with dynamic hyperparameters, the
optimization ability of the proposed FA is enhanced. To enable
synchronous optimization, implementation that bridges the
topological space and Euclidean space is detailed to help with
improving the convexity and continuity of search spaces. The
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proposed FA is first tested in an offshore wind farm with
a single OS and then it is applied in a large-scale offshore
wind farm with multiple OSs to demonstrate the capability of
synchronous optimization.
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